
Int J Thermophys (2009) 30:2098–2121
DOI 10.1007/s10765-009-0679-y

Magneto-thermoelastic Response in a Functionally
Graded Isotropic Unbounded Medium Under
a Periodically Varying Heat Source

Payel Das · M. Kanoria

Received: 9 March 2009 / Accepted: 5 November 2009 / Published online: 26 November 2009
© Springer Science+Business Media, LLC 2009

Abstract This paper deals with the problem of magneto-thermoelastic interactions
in a functionally graded isotropic unbounded medium due to the presence of period-
ically varying heat sources in the context of linear theory of generalized thermoelas-
ticity with energy dissipation (TEWED) and without energy dissipation (TEWOED)
having a finite conductivity. The governing equations of generalized thermoelastic-
ity (GN model) for a functionally graded material (FGM) under the influence of a
magnetic field are established. The Laplace–Fourier double transform technique has
been used to get the solution. The inversion of the Fourier transform has been done
by using residual calculus, where poles of the integrand are obtained numerically in a
complex domain by using Leguerre’s method and the inversion of the Laplace trans-
formation is done numerically using a method based on a Fourier series expansion
technique. Numerical estimates of the displacement, temperature, stress, and strain
are obtained for a hypothetical material. The solution to the analogous problem for
homogeneous isotropic materials is obtained by taking a suitable non-homogeneous
parameter. Finally, the results obtained are presented graphically to show the effect of
a non-homogeneous, magnetic field and damping coefficient on displacement, tem-
perature, stress, and strain.
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List of Symbols
u Displacement vector
λ,µ Lamé constants
ρ Constant mass density of the medium
γ Thermal module
αt Coefficient of linear thermal expansion
T0 Uniform reference temperature
T Small temperature increase above the reference temperature T0
J Electric current density vector
B Magnetic induction vector
cv Specific heat of the medium at constant strain
K ∗ A material constant characteristic for the G–N theory
H Total magnetic field vector at any time
E Electric field vector
µe Magnetic permeability of the medium
σ Electric conductivity of the medium
cT Non-dimensional finite thermal wave speed of G–N theory of

thermoelasticity II
εT Thermoelastic coupling constant
K Thermal conductivity
κ Thermal diffusivity

1 Introduction

The classical theories of thermoelasticity, involving an infinite speed of the propa-
gation of thermal signals, contradict physical facts. During the last three decades,
non-classical theories involving a finite speed of heat transport in elastic solids have
been developed to remove this paradox. In contrast to the conventional coupled ther-
moelasticity theory, which involves a parabolic type heat transport equation, these
generalized theories involving a hyperbolic-type heat transport equation and are sup-
ported by experiments exhibiting the actual occurrence of wave-type heat transport
in solids, called the second-sound effect. The extended thermoelasticity theory (ETE)
proposed by Lord and Shulman [1] incorporates a flux-rate term into Fourier’s law
of heat conduction and formulates a generalized form that involves a hyperbolic
type heat transport equation with a finite speed of the thermal signal. Green and
Lindsay [2] developed a temperature-rate dependent thermoelasticity (TRDTE) the-
ory by introducing relaxation time factors that do not violate the classical Fourier law
of heat conduction, and this theory also predicts a finite speed for heat propagation.
Because of the experimental evidence in support of the finiteness of the speed of
propagation of a heat wave, generalized thermoelasticity theories are more realistic
than conventional thermoelasticity theories in dealing with practical problems involv-
ing very short time intervals and high heat fluxes like those occurring in laser units,
energy channels, nuclear reactors, etc.
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The phenomenon of coupling between the thermo-mechanical behavior of materi-
als and the electromagnetic behavior of materials has been studied since the nineteenth
century. By the middle of the twentieth century, piezoelectric materials were finding
their first applications in hydrophones. In the last two decades, the concept of electro-
magnetic composite materials has arisen. Such composites can exhibit field coupling
that is not present in any of the monolithic constituent materials. These so called
“Smart” materials and composites have applications in ultrasonic imaging devices,
sensors, actuators, transducers, and many other emerging components. Magneto-
electro-elastic materials are used in various applications. Due to the ability of con-
verting energy from one kind to another (among mechanical, electric, and magnetic
energies), these materials have been used in high-tech areas such as lasers, supersonic
devices, microwave, infrared applications, etc. Furthermore, magneto-electro-elastic
materials exhibit coupling behavior among mechanical, electric, and magnetic fields
and are inherently anisotropic. Problems related to the wave propagation in thermo-
elastic or magneto-thermoelastic solids using these generalized theories have been
studied by several authors. Among them, Paria [3] has presented some ideas about
magneto-thermoelastic plane waves. Neyfeh and Nemat-Nasser [4,5] have studied
thermoelastic waves and electro-magneto-elastic waves in solids with a thermal relax-
ation time. Roychoudhuri and Chatterjee(Roy) [6] have introduced a coupled mag-
neto-thermoelastic problem in a perfectly conducting elastic half-space with thermal
relaxation. Hsieh [7] has considered modeling of new electromagnetic materials. Ez-
zat [8] has studied the state space approaches to generalized magneto-thermoelasticity
with two relaxation times in a perfectly conducting medium. Ezzat et al. [9] have stud-
ied electro-magneto-thermoelastic plane waves, with thermal relaxation in a medium
of perfect conductivity. Problems related to magneto-thermoelasticity with thermal
relaxation have been investigated by Sherief and Yoset [10] and by Baksi and Bera
[11].

Green and Naghdi [12] developed three models for generalized thermoelasticity
of homogeneous isotropic materials, which are labeled as models I, II, and III. The
nature of these theories is such that when the respective theories are linearized, Model
I reduces to the classical heat conduction theory (based on Fourier’s law). The line-
arized versions of models II and III permit propagation of thermal waves at a finite
speed. Model II, in particular, exhibits a feature that is not present in other established
thermoelastic models as it does not sustain dissipation of thermal energy (Green and
Naghdi [13]). In this model, the constitutive equations are derived by starting with the
reduced energy equation and by including the thermal displacement gradient among
other constitutive variables. Now the GN II model is employed to study the propagation
of magneto-thermoelastic waves which do not undergo both attenuation and disper-
sion and which has been investigated by Roychoudhuri [14]). Green–Naghdi’s third
model admits the dissipation of energy. In this model, the constitutive equations are
derived by starting with the reduced energy equation, where the thermal displacement
gradient in addition to the temperature gradient, are among the constitutive variables.
Green and Naghdi [15] included the derivation of a complete set of governing equa-
tions of a linearized version of the theory for homogeneous and isotropic materials
in terms of the displacement and temperature fields and a proof of the uniqueness of
the solution for the corresponding initial boundary value problem. In the context of a
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linearized version of this theory (Green and Naghdi [13,15]), a theorem on uniqueness
of solutions has been established by Chandrasekhariah [16,17]. Chandrashekhariah
et al. [18] have studied one-dimensional thermal wave propagation in a half-space
based on the GN model due to the sudden exposure of the temperature to the boundary
using the Laplace transform method. Chandrasekhariah et al. [19] have studied ther-
moelastic interactions caused by a continuous heat source in a homogeneous isotropic
unbounded thermoelastic body by employing the linear theory of thermoelasticity
without energy dissipation (TEWOED).

Mallik and Kanoria [20,21] have studied the thermoelastic interaction in an infinite
rotating elastic medium in the presence of heat sources in generalized thermoelas-
ticity. The problems have been solved by applying an Eigenvalue approach. Kar and
Kanoria [22,23] have analyzed thermoelastic interactions with energy dissipation in
a transversely isotropic thin circular disc and in an unbounded body with a spherical
hole. Taheri et al. [24] employed Green–Naghdi theories of type II and type III to
study thermal and mechanical waves in an annular domain. Roychoudhuri and Dutta
[25] have studied thermoelastic interaction in an isotropic homogeneous thermoelastic
solid containing time-dependent distributed heat sources which vary periodically for
a finite time interval in the context of TEWOED. Bandyopadhyay and Roychoudhuri
[26] have considered one-dimensional wave propagation in a homogeneous isotropic
thermoelastic half-space using Green–Naghdi model II under various boundary con-
ditions and obtained a short time solution for displacement, temperature, stress, and
strain.

The functionally graded material concept originated in Japan in 1984 during the
space-plane project in the form of a proposed thermal barrier material. A functionally
graded material (FGM) is a two-component composite characterized by a composi-
tional gradient from one component to the other. In contrast, traditional composites are
homogeneous mixtures and they, therefore, involve a compromise between the desir-
able properties of the composite materials. Since significant properties of an FGM
contain the pure form of each component, the need for compromise is eliminated. The
properties of both components can be fully utilized. The use of FGMs can eliminate
or control thermal stresses in structural components (Wetherhold and Wang [27]).

Shankar and Tzeng [28] have analyzed the two-dimensional thermal stress prob-
lem for a functionally graded beam whose thermoelastic constants vary exponentially
through the thickness. Vel and Batra [29] and Qian and Batra [30] have analyzed the
three-dimensional steady-state or transient thermal stress problems of a functionally
graded rectangular plate whose material properties vary with a power product form
of the thickness. On the other hand, since shell type structures are used in various
industrial fields, the thermoelastic analysis of a circular cylinder, sphere, and cylin-
drical panels made of an FGM becomes important. Lutz and Zimmerman [31,32]
have presented the exact solution for one-dimensional thermal stresses of a func-
tionally graded sphere and cylinder whose elastic modulus and coefficient of lin-
ear thermal expansion vary linearly with radius. Ye et al. [33] have presented the
exact solution for the axisymmetric thermoelastic problem of a uniformly heated
functionally graded transversely isotropic cylindrical shell, assuming that the mod-
ulus of elasticity and the coefficient of linear thermal expansion vary with the power
product form of the radial coordinate variable. El-Naggar et al. [34] have analyzed
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transient thermal stresses in a rotating non-homogeneous orthotropic hollow cylinder
using a finite difference method. Wang and Mai [35] have analyzed the transient one-
dimensional thermal stresses in non-homogeneous materials such as plates, cylinders,
and spheres using a finite element method. Ootao and Tanigawa [36] have studied
exactly a one-dimensional transient thermoelastic problem of a functionally graded
hollow cylinder whose thermal and thermoelastic constants are assumed to vary with
the power product form of the radial coordinate variable. Shao et al. [37] have solved a
thermomechanical problem of an FGM hollow circular cylinder whose material prop-
erties are assumed to be temperature independent and vary continuously in the radial
direction. Hosseini Kordkheili and Naghbadi [38] have studied the thermoelastic anal-
ysis of a functionally graded cylinder under axial loading. The transient thermoelastic
problem of a functionally graded cylindrical panel due to non-uniform heat supply
has been solved by Ootao and Tanigawa [39]. Bagri and Eslami [40] have analyzed a
unified generalized thermoelasticity formulation and application to thick functionally
graded cylinders. Analysis of thermoelastic waves in a functionally graded hollow
sphere based on the Green–Lindsay theory has been studied by Bagri and Eslami
[41]

Nayfeh and Nemat-Nasser [42] have studied electromagnetic thermoelastic plane
waves in solids with thermal relaxation. Rakshit and Mukhopadhyay [43] have intro-
duced an electro-magneto-thermo-visco-elastic problem in an infinite medium with a
cylindrical hole. Again Tianhu and Shirong [44] have studied a two-dimensional gen-
eralized electro-magneto-thermoelastic problem for a half space. Baksi et al. [45] have
studied the magneto-thermoelastic problems with thermal relaxation and heat sources
in a three-dimensional infinite rotating elastic medium. Roychoudhuri and Chatto-
padhyay [46] have explained electro-magneto-thermo-visco-elastic plane waves in
rotating media with thermal relaxation. Furthermore, thermoelastic interactions with
energy dissipation in an infinite solid with distributed periodically varying heat sources
have been studied by Banik et al. [47], and for functionally graded material without
energy dissipation, has been studied by Mallik and Kanoria [48]

The present work deals with an one-dimensional disturbance in an infinite isotropic
functionally graded medium in the context of magneto-thermoelasticity with energy
dissipation (GN model type II) and without energy dissipation (GN model type III)
in the presence of distributed periodically varying heat sources. The material prop-
erties of the FGM are assumed to vary exponentially with the space variable. The
governing equations are expressed in a Laplace–Fourier transform domain. The solu-
tion for displacement, temperature, stress, and strain in the Laplace transform domain
are obtained by taking the Fourier inversion which is carried out by using residual
calculus, where the poles of the integrand are obtained numerically in the complex
domain by using Leguerre’s method. The numerical inversion of the Laplace transform
is done by using a method based on a Fourier series expansion technique (Honig and
Hirdes [49]). The results obtained theoretically have been compared numerically and
are presented graphically for a copper-like material. A complete and comprehensive
analysis and comparison of results of different theories are presented, and the effects
of non-homogeneity, magnetic field, and damping coefficient on the displacement,
temperature, stress, and strain have been shown graphically.
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2 Basic Equations

The constitutive equations are

τi j = 2µei j + [λ	 − γ (T − T0)]δi j , (2.1)

where

ei j = 1

2
(ui, j + u j,i ),	 = eii . (2.2)

Stress equations of motion in the presence of body forces Fi are

τi j, j + Fi = ρüi . (2.3)

The heat equation corresponding to generalized thermoelasticity with energy dissipa-
tion is

ρcv T̈ + γ T0	̈ = K �2 Ṫ + K ∗ �2 T + ρ Q̇, (2.4)

where γ = (3λ+2µ)αt , K is the thermal conductivity, and K ∗ is a material constant.
With the effects of a functionally graded solid, the parameters λ,µ, K ∗, K , γ , and ρ

are no longer constants but are space dependent. Thus, we replace λ,µ, K ∗, K , γ , and
ρ by λ0 f (x), µ0 f (x), K ∗

0 f (x), K0 f (x), γ0 f (x) and ρ0 f (x) where λ0, µ0, K ∗
0 , K0,

γ0, and ρ0 are assumed to be constants and f (x) is a given dimensionless function of
the space variable x = (x, y, z). Then the equations corresponding to Eqs. 2.1, 2.3,
and 2.4 take the following form:

τi j = f (x)[2µ0ei j + {λ0	 − γ0(T − T0)}δi j ]. (2.5)

f (x)ρ0üi = f (x)[2µ0ei j + {λ0	 − γ0(T − T0)}δi j ], j

+ f (x), j [2µ0ei j + {λ0	 − γ0(T − T0)}δi j ] + Fi , (2.6)

and

[K0 f (x)Ṫ,i + K ∗
0 f (x)T,i ],i + ρ0 f (x)Q̇ = ρ0 f (x)cv T̈ + γ0 f (x)T0	̈. (2.7)

3 Formulation of the Problem

We now consider a functionally graded infinite isotropic thermoelastic body at a uni-
form reference temperature T0 in the presence of periodically varying heat sources
distributed over a plane area. We shall consider a one-dimensional disturbance of the
medium, so that the displacement vector u and temperature field T can be expressed
in the following form:

123



2104 Int J Thermophys (2009) 30:2098–2121

u = (u(x, t), 0, 0),
(3.1)

T = T (x, t).

The electromagnetic field is governed by Maxwell’s equations (in the absence of the
displacement current and charge density) as

curl H = J, curl E = −∂B
∂t

, div B = 0, B = µeH. (3.2)

The generalized Ohm’s law in deformable continua is

J = σ(E + u̇ × B), (3.3)

where the small effect of a temperature gradient on the conduction current J is
neglected.

It is assumed that the material properties depend only on the x-coordinate. So, we
take f (x) as f (x). In the context of the linear theory of generalized thermoelasticity
based on the Green–Naghdi model III, the equation of motion, heat equation, and
constitutive equation can be written as

f (x)

[
(λ0 + 2µ0)

∂2u

∂x2 − γ0
∂T

∂x

]
+

[
(λ0 + 2µ0)

∂u

∂x
− γ0(T − T0)

]
∂ f (x)

∂x
+ Fx

= ρ0 f (x)
∂2u

∂t2 , (3.4)

where

F = (J × B), F = (Fx , Fy, Fz)

∂

∂x

[
K ∗

0 f (x)
∂T

∂x
+ K0 f (x)

∂ Ṫ

∂x

]
+ ρ0 f (x)Q̇

= ρ0 f (x)cv T̈ + γ0 f (x)T0
∂3u

∂t2∂x
, (3.5)

τxx = f (x)[(λ0 + 2µ0)exx − γ0(T − T0)], (3.6)

where

exx = ∂u

∂x
. (3.7)

We set H = H0 + h , where H0 = (0, 0, H0). The perturbed magnetic field h is so
small that the product of h and u and their derivatives can be neglected for linearization
of the field equations.

We assume that all the vector and scalar functions depend only on the spatial coor-
dinate x and time t and are independent of the y and z coordinates.
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Equation 3.21 gives

Jx = 0, Jy = −∂ Hz

∂x
, Jz = ∂ Hy

∂x
, (3.8)

where J = (Jx , Jy, Jz), H = (Hx , Hy, Hz).

Equation 3.22 yields

∂ Hx

∂t
= 0,

∂ Ez

∂x
= µe

∂ Hy

∂t
,
∂ Ey

∂x
= −µe

∂ Hz

∂t
, E = (Ex , Ey, Ez). (3.9)

Equation 3.23 gives
∂hx

∂x
= 0 which implies that hx = 0, since initially no perturbed

field is applied along the x-axis.
The modified Ohm’s law gives

Jx = σ Ex , Jy = σ

[
Ey − µe Hz

∂u

∂t

]
, Jz = σ

[
Ez + µe Hy

∂u

∂t

]
. (3.10)

NowJx = 0 implies Ex = 0 .

By eliminating Jx , Jy, Jz and using Eqs. 3.2, 3.3, and 3.10, we get

∂ Hz

∂t
= νH

∂2 Hz

∂x2 − ∂

∂x
(Hz

∂u

∂t
), (3.11)

∂ Hy

∂t
= νH

∂2 Hy

∂x2 − ∂

∂x
(Hy

∂u

∂t
), (3.12)

where νH = (σµe)
−1 is called the magnetic viscosity.

Equation 3.4 reduces to

f (x)

[
(λ0 + 2µ0)

∂2u

∂x2 − γ0
∂T

∂x

]
+

[
(λ0 + 2µ0)

∂u

∂x
− γ0(T − T0)

]
∂ f (x)

∂x

− ∂

∂x

[
1

2
µe(H2

y + H2
z )

]
= ρ0 f (x)

∂2u

∂t2 (3.13)

and Eq. 3.5 can be written as

∂

∂x

[
K ∗

0 f (x)
∂T

∂x
+ K0 f (x)

∂2T

∂x∂t

]
+ ρ0 f (x)Q̇

= ρ0 f (x)cv

∂2T

∂t2 + γ0 f (x)T0
∂3u

∂x∂t2 . (3.14)

We set Hz = H0 + hz where the perturbed magnetic field hz is small compared to the
strong initial magnetic field H0.
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Then from Eqs. 3.11–3.14 after linearization, we get

∂hz

∂t
= νH

∂2hz

∂x2 − H0
∂2u

∂x∂t
,
∂hy

∂t
= νH

∂2hy

∂x2 (3.15)

and

f (x)

[
(λ0 + 2µ0)

∂2u

∂x2 − γ0
∂T

∂x

]
+

[
(λ0 + 2µ0)

∂u

∂x
− γ0(T − T0)

]
∂ f (x)

∂x

−µe H0
∂hz

∂x
= ρ0 f (x)

∂2u

∂t2 . (3.16)

Now for a perfect electrical conductor, νH −→ 0 as σ −→ ∞. Equation 3.151

leads to hz = −H0
∂u

∂x
, since there is no perturbation at ∞. Then Eq. 3.16 reduces to

f (x)

[
c2

1(1 + RH )
∂2u

∂x2 − γ0

ρ0

∂T

∂x

]
+

[
c2

1
∂u

∂x
− γ0

ρ0
(T − T0)

]
∂ f (x)

∂x
= f (x)

∂2u

∂t2 ,

(3.17)

where RH = µe H2
0

ρ0c2
1

= v2
A

c2
1

, c1 =
√

λ0 + 2µ0

ρ0
, and vA =

√
µe

ρ0
H0 is the Alf’ven

wave velocity of the medium. The coefficient RH represents the effect of an external
magnetic field in the thermoelastic processes proceeding in the body.

We introduce the following dimensionless quantities:

x ′ = x

l
, u′ = λ0 + 2µ0

γ0T0l
u, t ′ = c1t

l
, θ = T − T0

T0
,

f (x ′) = f (x), τ ′
x ′x ′ = τxx

γ0T0
, e′

x ′x ′ = exx , 1 + RH = R2
M ,

where l = some standard length and c1 =
√

λ0 + 2µ0

ρ0
is the standard speed, and

omitting primes, Eqs. 3.17, 3.14, 3.6, and 3.7 can be re-written in dimensionless form
as

f (x)

[
R2

M
∂2u

∂x2 − ∂θ

∂x

]
+

[
∂u

∂x
− θ

]
∂ f (x)

∂x
= f (x)

∂2u

∂t2 , (3.18)

c2
T

∂

∂x

[
f (x)

∂θ

∂x

]
+ κ0

∂

∂x

[
f (x)

∂2θ

∂x∂t

]
+ f (x)Q0 = f (x)

∂2θ

∂t2 + εT f (x)
∂3u

∂x∂t2 ,

(3.19)

τxx = f (x)

[
∂u

∂x
− θ

]
, (3.20)

exx = γ0T0

λ0 + 2µ0

∂u

∂x
, (3.21)
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where

c2
T = K ∗

0

ρ0cvc2
1

, εT = γ 2
0 T0

(λ0 + 2µ0)ρ0cv

, κ0 = K0

ρ0cvc1l
, Q0 = l

T0cvc1

∂ Q

∂t
.

We assume that the medium is initially at rest. The undisturbed state is maintained at
reference a temperature. Then we have

u(x, 0) = u̇(x, 0) = θ(x, 0) = θ̇ (x, 0) = 0. (3.22)

3.1 Exponential Variation of Non-Homogeneity

We take f (x) = e−nx , where n is a dimensionless constant.Then the corresponding
equations, Eqs. 3.18–3.21, reduce to

R2
M

∂2u

∂x2 − ∂θ

∂x
− n

(
∂u

∂x
− θ

)
= ∂2u

∂t2 , (3.23)

c2
T

(
∂2θ

∂x2 − n
∂θ

∂x

)
+ κ0

(
∂3θ

∂x2∂t
− n

∂2θ

∂x∂t

)
+ Q0 = εT

∂3u

∂t2∂x
+ ∂2θ

∂t2 , (3.24)

τxx (x, t) = e−nx
(

∂u

∂x
− θ

)
, (3.25)

exx (x, t) = β1
∂u

∂x
. (3.26)

where

β1 = γ0T0

λ0 + 2µ0
.

Let us define the Laplace–Fourier double transform of the function g(x, t) by

ḡ(x, p) =
∞∫

0

g(x, t)e−pt dt, Re(p) > 0

ˆ̄g(α, p) = 1√
2π

∞∫
−∞

ḡ(x, p)eiαx dx .

Applying the Laplace–Fourier double integral transform to Eqs. 3.23–3.26 and using
the relation in Eq. 3.20 we get

(R2
Mα2 + p2 − inα) ˆ̄u(α, p) = (iα + n) ˆ̄θ(α, p), (3.27)

[c2
T α(α − in) + p2 + αpκ0(α − in)] ˆ̄θ(α, p) = iεT αp2 ˆ̄u(α, p) + ˆ̄Q0, (3.28)
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ˆ̄τxx (α, p) = −i(α + in) ˆ̄u(α + in, p) − ˆ̄θ(α + in, p), (3.29)
ˆ̄exx = −iαβ1 ˆ̄u(α, p). (3.30)

Solving Eqs. 3.27 and 3.28 for ˆ̄u(α, p) and ˆ̄θ(α, p), we get

ˆ̄u(α, p) =
ˆ̄Q0(iα + n)

M(α)
, (3.31)

ˆ̄θ(α, p) =
ˆ̄Q0(R2

Mα2 + p2 − iαn)

M(α)
, (3.32)

where

M(α) =
(

c2
T + pκ0

)
R2

Mα4 − α3
(

2ic2
T n + inpκ0 + inpκ0 R2

M

)

+α2
[

p2(R2
M + εT + c2

T ) + p3κ0 − c2
T n2 − n2 pκ0

]

−α
[

p2in(1 + εT + c2
T + pκ0)

]
+ p4

=
(

c2
T + pκ0

)
R2

M(α − α1)(α − α2)(α − α3)(α − α4). (3.33)

Now the expressions for the stress and strain in the Laplace–Fourier transform domain
can be obtained from Eqs. 3.29 and 3.30 using Eqs. 3.31 and 3.32

ˆ̄τxx (α, p) =
ˆ̄Q0(1 − R2

M)(α + in)2

M(α + in)
− p2 ˆ̄Q0

M(α + in)

=
ˆ̄Q0

[
(1 − R2

M)(α + in)2 − p2
]

M(α + in)
, (3.34)

ˆ̄exx (α, p) = β1
ˆ̄Q0α(α − in)

M(α)
. (3.35)

Thus, the solution for the displacement, temperature, stress, and strain in the Laplace
transform domain can be obtained in terms of the following four integrals:

ū(x, p) = 1√
2π

∞∫
−∞

ˆ̄Q0(iα + n)

M(α)
e−iαx dα, (3.36)

θ̄ (x, p) = 1√
2π

∞∫
−∞

ˆ̄Q0
(
R2

Mα2 + p2 − inα
)

M(α)
e−iαx dα, (3.37)

τ̄xx (x, p) = 1√
2π

∞∫
−∞

ˆ̄Q0
[
(1 − R2

M)(α + in)2 − p2
]

M(α + in)
e−iαx dα, (3.38)
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ēxx (x, p) = 1√
2π

∞∫
−∞

β1
ˆ̄Q0α(α − in)

M(α)
e−iαx dα. (3.39)

where,

M(α + in) =
(

c2
T + pκ0

)
R2

Mα4 + in
(

4c2
T R2

M + 3κ0 pR2
M − 2c2

T − pκ0

)
α3

− (6c2
T n2 R2

M + 3κ0n2 pR2
M − 5c2

T n2 − 2κ0n2 p − c2
T p2 − εT p2

− κ0 p3 − p2 R2
M)α2 − in(4c2

T n2 R2
M + κ0n2 pR2

M − 4c2
T n2

− n2κ0 p + p2 − c2
T p2 − εT p2 − κ0 p3 − 2p2 R2

M)α − c2
T n4

+ n2 p2 + c2
T n4 R2

M − n2 p2 R2
M + p4

= (c2
T + pκ0)R2

M(l − l1)(l − l2)(l − l3)(l − l4). (3.40)

3.2 Periodically Varying Heat Source

Now let us assume that the heat source is distributed over the plane x = 0 in the
following form:

Q0 = Q∗
0δ(x) sin

π t

τ
, 0 ≤ t ≤ τ

= 0. t > τ (3.41)

Then,

ˆ̄Q0 = Q∗
0πτ(1 + e−pτ )√
2π(π2 + p2τ 2)

. (3.42)

Thus, the expressions for the displacement, temperature, stress, and strain in the
Laplace transform domain take the following form:

ū(x, p) =
∞∫

−∞

Q∗
0τ(1 + e−pτ )(iα + n)

2(π2 + p2τ 2)M(α)
e−iαx dα, (3.43)

θ̄ (x, p) =
∞∫

−∞

Q∗
0τ(1 + e−pτ )

(
R2

Mα2 + P2 − inα
)

2(π2 + p2τ 2)M(α)
e−iαx dα, (3.44)

τ̄xx (x, p) =
∞∫

−∞

Q∗
0τ(1 + e−pτ )

[(
1 − R2

M

)
(α + in)2 − p2

]
2(π2 + p2τ 2)M(α + in)

e−iαx dα, (3.45)
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ēxx (x, p) =
∞∫

−∞

β1 Q∗
0τ(1 + e−pτ )α(α − in)

2(π2 + p2τ 2)M(α)
e−iαx dα. (3.46)

Applying contour integration to the Eqs. 3.43–3.46 we obtain

ū(x, p) = − iQ∗
0πτ(1 + e−pτ )

R2
M(c2

T + pκ0)(π2 + p2τ 2)

×
4∑

j=1
Im(α j )<0

A j (iα j + n)e−iα j x for x > 0

= iQ∗
0πτ(1 + e−pτ )

R2
M(c2

T + pκ0)(π2 + p2τ 2)

×
4∑

j=1
Im(α j )>0

A j (iα j + n)e−iα j x , for x < 0 (3.47)

θ̄ (x, p) = − iQ∗
0πτ(1 + e−pτ )

R2
M(c2

T + pκ0)(π2 + p2τ 2)

×
4∑

j=1
Im(α j )<0

A j

(
R2

Mα2
j + p2 − inα j

)
e−iα j x for x > 0

= − iQ∗
0πτ(1 + e−pτ )

R2
M(c2

T + pκ0)(π2 + p2τ 2)

×
4∑

j=1
Im(α j )>0

A j

(
R2

Mα2
j + p2 − inα j

)
e−iα j x , for x < 0 (3.48)

τ̄xx (x, p) = − iQ∗
0πτ(1 + e−pτ )

R2
M(c2

T + pκ0)(π2 + p2τ 2)

×
4∑

j=1
Im(α j )<0

B j

[(
1 − R2

M

) (
l j + in

)2 − p2
]

e−iα j x for x > 0

= iQ∗
0πτ(1 + e−pτ )

R2
M(c2

T + pκ0)(π2 + p2τ 2)

×
4∑

j=1Im(α j )>0

B j

[(
1 − R2

M

) (
l j + in

)2 − p2
]

e−iα j x , for x < 0 (3.49)
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ēxx (x, p) = − iβ1 Q∗
0πτ(1 + e−pτ )

R2
M(c2

T + pκ0)(π2 + p2τ 2)

×
4∑

j=1
Im(α j )<0

A jα j (α j − in)e−iα j x for x > 0

= iβ1 Q∗
0πτ(1 + e−pτ )

R2
M(c2

T + pκ0)(π2 + p2τ 2)

×
4∑

j=1
Im(α j )>0

A jα j (α j − in)e−iα j x , for x < 0 (3.50)

where A j ’s and B j ’s are given by

A j =
4∏

n=1
n �= j

1

(α j − αn)

B j =
4∏

n=1
n �= j

1

(l j − ln)
j = 1, 2, 3, 4 (3.51)

4 Inversion of Laplace Transform

It is difficult to find the inverse Laplace transform of the complicated solutions for the
displacement, temperature, stress, and strain in the Laplace transform domain. So we
have to resort to numerical computation. We now outline the numerical procedure to
solve the problem. Let f̄ (x, p) be the Laplace transform of a function f (x, t).

Then the inversion formula for Laplace transform can be written as

f (x, t) = 1

2π i

d+i∞∫

d−i∞
ept f̄ (x, p) dp (4.1)

where d is an arbitrary real number greater than real parts of all singularities of f̄ (x, p).
Taking p = d + iw, the preceding integral takes the form,

f (x, t) = edt

2π

∞∫
−∞

f (x, d + iw) dw. (4.2)
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Expanding the function h(x, t) = e−dt f (x, t) in a Fourier series in the interval
[0, 2T ], we obtain the approximate formula (Honig and Hirdes [49])

f (x, t) = f∞(x, t) + ED (4.3)

where

f∞(x, t) = 1

2
c0 +

∞∑
k=1

cK 0 ≤ t ≤ 2T (4.4)

ck = edt

T

[
e

ikπ t
T f̄ (x, d + ikπ t

T
)

]
. (4.5)

The discretization error ED can be made arbitrarily small by choosing d large
enough (Honig and Hirdes [49]). Since the infinite series in Eq. 4.4 can be summed
upto a finite number N of terms, the approximate value f (x, t) becomes

fN (x, t) = 1

2
c0 +

N∑
k=1

ck, 0 ≤ t ≤ 2T (4.6)

Using the preceding formula to evaluate f (x, t), we introduce a truncation error ET

that must be added to the discretization error to produce the total approximation error.
Two methods are used to reduce the total error. First the “Korrecktur” method is

applied to reduce the discretization error. Next the ε-algorithm is used to accelerate
convergence (Honig and Hired [49]).

The Korrecktur method uses the following formula to evaluate the function f (x, t):

f (x, t) = f∞(x, t) − e−2dT f∞(x, 2T + t) + E ′
D, (4.7)

where the discretization error | E ′
D |≤| ED |. Thus, the approximate value of f (x, t)

becomes

fN K (x, t) = fN (x, t) − e−2dT fN ′(x, 2T + t), (4.8)

where N ′ is an integer such that N ′ < N .
We shall now describe the ε-algorithm that is used to accelerate the convergence of

the series in Eq. 4.6. Let N = 2q +1, where q is a natural number and sm =
∑m

k=1
ck

is the sequence of the partial sum of the series in Eq. 4.6
We define ε-sequence by

ε0,m = 0, ε1,m = sm

and

εp+1,m = εp−1,m + 1

εp,m+1 − εp,m
, p = 1, 2, 3, . . .

123



Int J Thermophys (2009) 30:2098–2121 2113

It can be shown that (Honig and Hirdes 1984 [49]) the sequence ε1,1, ε3,1, ε5,1, . . . ,

εN ,1 converges to f (x, t)+ ED − c0

2
faster than the sequence of partial sums sm, m =

1, 2, 3, . . .

The actual procedure used to invert the Laplace transform consists of using Eq. 4.8
together with the ε-algorithm. The values of d and T are chosen according to the
criteria outlined in [49].

5 Numerical Result and Discussion

To get the solution for the thermal displacement, temperature, stress, and strain in the
space-time domain, we have to apply the Laplace inversion formula to Eqs. 3.47–3.50,
respectively. This has been done numerically using a method based on the Fourier series
expansion technique mentioned above. To get the roots of the polynomial M(α) and
M(α + in) in the complex domain, we have used Laguerre’s method. The numerical
code has been prepared using Fortran77 programming language. For computational
purposes, a copper-like material with a material constant (Roychoudhui and Dutta
[25]) has been taken into consideration.

εT = 0.0168, λ = 1.387 × 1011 N·m−2, µ = 0.448 × 1011 N·m−2,

αt = 1.67 × 10−8 ◦C−1
, θ = 1 ◦C

Also, we have taken Q∗
0 = 1, τ = 1, cP = 1, and cT = 2 so the faster wave is the

thermal wave.
We now present our results in the form of graphs (Figs. 1, 2, 3, 4, 5, 6, 7, 8) to

compare the thermal displacement, temperature, thermal stress, and strain in the case
of the TEWOED and TEWED models under the influence of a magnetic field for a
functionally graded material.

Fig. 1 Variation of displacement with distance x for t = 0.4, × estimated from Roychoudhuri and Dutta
[25]
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Fig. 2 Variation of displacement with distance x for n = 1.0 and RM = 2.0

Fig. 3 Variation of temperature θ with distance x for t = 0.4, × estimated from Roychoudhuri and Dutta
[25]

Figure 1 depicts the variation of the thermal displacement (u) versus distance x for
time t = 0.4. It is observed that the displacement increases for 0.0 ≤ x ≤ 0.2 in the
absence of both the magnetic field and dissipation of energy (RM = 1.0, κ0 = 0.0)

and then decreases and ultimately goes to zero for x ≥ 0.8 , where n = 1.0. The result
absolutely complies with that of Mallik and Kanoria [48]). Also, in the case when
(n = 0.0), u increases at first, then decreases and ultimately disappears, as before,
with the increase of x . As may be seen from the figure, κ0 = 1.2 corresponds to
a slower rate of decay than the case when κ0 = 0.0. The result agrees with that of
Banik et al. [47]. The comparison of the results obtained in [48] and [47] and by the
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Fig. 4 Variation of temperature θ with distance x for n = 1.0 and RM = 2.0

present numerical methods are given in Table 1. Moreover, for (RM = 1.0), (κ0 =
0.0), and (n = 0.0), the result obtained by the present numerical method is shown
in Fig. 1 by dots (. . .) and the estimated result by Roychoudhuri and Dutta [25] is
shown by cross (×) in the same figure where they have used the analytical method.
The nature of the profile of u is observed by taking RM = 2, 4, 6 and keeping κ0 = 1.2
and n = 1.0. It is observed that with the increase of the magnetic field, the magnitude
of the displacement decreases which is quite plausible. It is also clear from Table 1.

Figure 2 depicts the variation of the thermal displacement with distance taking the
non-homogeneous parameter n = 1.0, the magnetic field RM = 2.0, and t = 0.4, 0.6,
where we have considered the GN III model (TEWED). Now it is observed that, as the
damping coefficient increases, the rate of decay of the displacement becomes slow and,
for t = 0.6, the magnitude of the thermal displacement is greater than the magnitude
of the same for t = 0.4 for a particular value of x .

Figure 3 is plotted to show the variation of temperature θ with distance x for time
t = 0.4. Figure 3 depicts the effect the of magnetic field on the temperature when the
non-homogeneous parameter n = 1.0 and there is a dissipation energy (κ0 = 1.2).
Here also a similar qualitative behavior is observed as in the case of Fig. 1. This can also
be verified from the expression of θ̄ given in Eq. 3.48 involving e−iα j x , Im(α j ) < 0
for x ≥ 0.

Figure 4 depicts the variation of temperature with distance for the non-homoge-
neous parameter n = 1.0 and RM = 2.0. Here we have considered the GN III model
(TEWED), i.e., dissipation of energy has occurred. It is observed that as the damping
coefficient increases, i.e., κ0 = 2.0, 4.0, 6.0 and t = 0.4, the temperature decreases
very slowly with distance and the rate of damping of the temperature increases with
the increase of the damping coefficient. But for t = 0.6 when κ0 = 2.0, the temper-
ature decreases with distance and almost linearly, but for κ0 = 4.0 and κ0 = 6.0, it
decreases more slowly than for the case where κ0 = 2.0.
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Fig. 5 Variation of stress τxx with distance x for t = 0.4, × estimated from Roychoudhuri and Dutta [25]

Fig. 6 Variation of stress τxx with displacement x for n = 1.0 and RM = 2.0

Figure 5 shows the variation of thermal stress versus distance x for time t = 0.4.
This figure depicts the effect of the magnetic field when the non-homogeneous param-
eter n = 1.0 and there is a dissipation of energy (we take the damping coefficient
κ0 = 1.2 ). And it is observed that in this case when the magnetic field RM = 2.0, the
stress is negative and its magnitude decreases very slowly and finally becomes zero.
But when the magnetic field RM = 4.0, the magnitude of the thermal stress tends to
zero and for RM = 6.0, the oscillatory nature is observed for small values of x .

Figure 6 depicts the variation of the thermal stress with distance x for the non-
homogeneous parameter n = 1.0 and RM = 2.0. This is the case using the GN III
model (TEWED), i.e., dissipation of energy has occurred. Now it is observed that, for
t = 0.4, the stress is negative, and as the damping coefficient increases, the magnitude
of the stress decreases for 0 < x < 0.6. For t = 0.6, the magnitude of the stress is
negative for 0 < x < 0.8 (κ0 = 2), 0 < x < 0.6 (κ0 = 4), and 0 < x < 0.5 (κ0 = 6)
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Fig. 7 Variation of strain exx with distance x for t = 0.4, × estimated from Roychoudhuri and Dutta [25]

Fig. 8 Variation of strain with distance x for n = 1.0 and RM = 2.0

and after this, it is positive and finally diminishes to zero. This is also in conformity
with the fact that the stress should decrease with the increasing distance x from the
plane x = 0, where the heat source is applied.

Figure 7 gives the variation of the thermal strain against distance x for time t = 0.4.
From this figure we can also show that, for κ0 = 1.2 and n = 1.0, the strain is positive
up to a distance x = 0.2 for RM = 1, 2, 4, but as the magnetic field increases, the
magnitude of the strain decreases (RM = 1, 2, 4). Then it becomes negative and finally
diminishes to zero. The magnitude of the strain almost coincides with the x-axis. This
concludes when with an increase of the magnetic field, the deformation in the body is
almost nil. This is also clear from Table 2.

Figure 8 depicts the variation of the thermal strain with distance for the non-
homogeneous parameter n = 1.0 , RM = 2.0 , κ0 = 2, 4, 6, and t = 0.4, 0.6. This
is the case for the GN III model (TEWED), i.e., dissipation of energy has occurred.
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Table 1 Variation of thermal displacement u versus distance x for t = 0.4

x RM = 1.0, κ0 = 0.0, n = 1.0 RM = 1.0, κ0 = 1.2, n = 0.0

Results obtained
by Mallik and
Kanoria [48]

Results obtained
by present
numerical method

Results obtained
by Banik et al.
[47]

Results obtained
by present
numerical method

0.0 0.000263 0.000263 0.000000 0.000000

0.1 0.001560 0.001560 0.000478 0.000478

0.2 0.001890 0.001890 0.000576 0.000576

0.3 0.001520 0.001520 0.000496 0.000496

0.4 0.000873 0.000873 0.000381 0.000381

0.5 0.000388 0.000388 0.000287 0.000287

0.6 0.000122 0.000122 0.000215 0.000215

0.7 0.000016 0.000016 0.000160 0.000160

0.8 0.000000 0.000000 0.000118 0.000118

0.9 0.000000 0.000000 0.000087 0.000087

1.0 0.000000 0.000000 0.000063 0.000063

1.1 0.000000 0.000000 0.000046 0.000046

1.2 0.000000 0.000000 0.000033 0.000033

1.3 0.000000 0.000000 0.000023 0.000023

1.4 0.000000 0.000000 0.000016 0.000016

Table 2 Variation of temperature θ versus distance x for t = 0.4

x RM = 1.0, κ0 = 0.0, n = 1.0 RM = 1.0, κ0 = 1.2, n = 0.0

Results obtained
by Mallik and
Kanoria [48]

Results obtained
by present
numerical method

Results obtained
by Banik et al.
[47]

Results obtained
by present
numerical method

0.0 0.054500 0.054500 0.033100 0.033100

0.1 0.045200 0.045200 0.027500 0.027500

0.2 0.035900 0.035900 0.022700 0.022700

0.3 0.026800 0.026800 0.018600 0.018600

0.4 0.018400 0.018400 0.015100 0.015100

0.5 0.011100 0.011100 0.012100 0.012100

0.6 0.005290 0.005290 0.009700 0.009700

0.7 0.001430 0.001430 0.007690 0.007690

0.8 0.000005 0.000005 0.006050 0.006050

0.9 0.000000 0.000000 0.004720 0.004720

1.0 0.000000 0.000000 0.003650 0.003650

1.1 0.000000 0.000000 0.002800 0.002800

1.2 0.000000 0.000000 0.002130 0.002130

1.3 0.000000 0.000000 0.001610 0.001610

1.4 0.000000 0.000000 0.001210 0.001210
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Table 3 Variation of thermal stress τxx versus distance x for t = 0.4

x RM = 1.0, κ0 = 0.0, n = 1.0 RM = 1.0, κ0 = 1.2, n = 0.0

Results obtained
by Mallik and
Kanoria [48]

Results obtained
by present
numerical method

Results obtained
by Banik et al.
[47]

Results obtained
by present
numerical method

0.0 −0.038300 −0.038300 −0.028300 −0.028300

0.1 −0.035300 −0.035300 −0.027300 −0.027300

0.2 −0.030400 −0.030400 −0.024400 −0.024400

0.3 −0.023500 −0.023500 −0.020300 −0.020300

0.4 −0.015100 −0.015100 −0.016000 −0.016000

0.5 −0.008020 −0.008020 −0.012500 −0.012500

0.6 −0.003480 −0.003480 −0.009660 −0.009660

0.7 −0.000886 −0.000886 −0.007450 −0.007450

0.8 −0.000003 −0.000003 −0.005720 −0.005720

0.9 0.000000 0.000000 −0.004370 −0.004370

1.0 0.000000 0.000000 −0.003320 −0.003320

1.1 0.000000 0.000000 −0.002510 −0.002510

1.2 0.000000 0.000000 −0.001890 −0.001890

1.3 0.000000 0.000000 −0.001410 −0.001410

1.4 0.000000 0.000000 −0.001050 −0.001050

Now it is observed that, for t = 0.4, the strain is positive in the range 0 ≤ x ≤ 0.2,
then becomes negative in the range 0.2 ≤ x ≤ 0.9, and finally becomes zero. But,
for t = 0.6, the stress is positive in the range 0 ≤ x ≤ 0.31(κ0 = 2.0), in the range
0 ≤ x ≤ 0.36 (κ0 = 4.0), and in the range 0 ≤ x ≤ 0.38 (κ0 = 6.0) and then it
becomes negative.

In all the figures when there is neither a magnetic field (RM = 1.0) nor a dissipation
of energy (κ0 = 0.0), the result agrees with that of Mallik and Kanoria [48] for func-
tionally graded materials. For the homogeneous case (n = 0.0) and in the absence of
a magnetic field (RM = 1.0), the result agrees with that of Banik et al. [47]. The com-
parison of the results obtained in [48] and [47] and by the present numerical methods
is shown in Tables 2, 3, and 4. When n = 0.0, RM = 1.0, and κ0 = 0.0 , the result is
confirmed by that of Roychoudhuri and Dutta [25] in which the closed form solution
of the problem has been derived and the estimated results from [25] are shown with
crosses in the figures (Figs. 3, 5, 7).

6 Conclusions

This paper studies the magneto-thermoelastic interactions in a functionally graded
isotropic unbounded medium due to the presence of periodically varying heat sources
in the context of the linear theory of generalized thermoelasticity with energy dissipa-
tion (TEWED) and without energy dissipation (TEWOED). The material properties

123



2120 Int J Thermophys (2009) 30:2098–2121

Table 4 Variation of thermal strain exx versus distance x for t = 0.4

x RM = 1.0, κ0 = 0.0, n = 1.0 RM = 1.0, κ0 = 1.2, n = 0.0

Results obtained
by Mallik and
Kanoria [48]

Results obtained
by present
numerical method

Results obtained
by Banik et al.
[47]

Results obtained
by present
numerical method

0.0 6.8 × 10−10 6.8 × 10−10 2.74 × 10−10 2.74 × 10−10

0.1 2.89 × 10−10 2.89 × 10−10 9.32 × 10−11 9.32 × 10−11

0.2 −2.99 × 10−11 −2.99 × 10−11 −7.9 × 10−12 −7.9 × 10−12

0.3 −2.19 × 10−10 −2.19 × 10−10 −4.27 × 10−11 −4.27 × 10−11

0.4 −2.25 × 10−10 −2.25 × 10−10 −3.91 × 10−11 −3.91 × 10−11

0.5 −1.36 × 10−10 −1.36 × 10−10 −3.03 × 10−11 −3.03 × 10−11

0.6 −6.48 × 10−11 −6.48 × 10−11 −2.33 × 10−11 −2.33 × 10−11

0.7 −1.76 × 10−11 −1.76 × 10−11 −1.77 × 10−11 −1.77 × 10−11

0.8 −7.05 × 10−14 −7.05 × 10−14 −1.34 × 10−11 −1.34 × 10−11

0.9 −9.07 × 10−19 −9.07 × 10−19 −1.01 × 10−11 −1.01 × 10−11

1.0 1.11 × 10−19 1.11 × 10−19 −7.51 × 10−12 −7.51 × 10−12

1.1 −1.15 × 10−20 −1.15 × 10−20 −5.55 × 10−12 −5.55 × 10−12

1.2 3.7 × 10−20 3.7 × 10−20 −4.07 × 10−12 −4.07 × 10−12

1.3 −9.8 × 10−23 −9.8 × 10−23 −2.96 × 10−12 −2.96 × 10−12

1.4 −1.67 × 10−21 −1.67 × 10−21 −2.14 × 10−12 −2.14 × 10−12

under consideration are assumed to vary exponentially with distance. The analysis of
the results permits some concluding remarks.

1. The presence of a magnetic field and damping coefficient has a significant effect
on the solution of the displacement, temperature, stress, and strain. From the
graphs it is clear that with an increase of both the magnetic field and the damping
coefficient, the magnitudes of the displacement, temperature, stress, and strain
decrease.

2. The results obtained in this paper agree with those of Mallik and Kanoria [48]
when both the magnetic field and the dissipation of energy are absent. They also
agree with Banik et al. [47], when the homogeneous material in the absence of a
magnetic field is considered. Moreover, the solution of Roychoudhuri and Dutta
[25] can be derived from the present solution considering the body to be homoge-
neous in the absence of both the magnetic field and dissipation of energy in which
the closed form solution of the problem has been obtained.
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